U.S. Food and Drug Administration approves Opdivo label update offering flexible flat-dosing options every two weeks (240 mg) or every four weeks (480 mg) 1
Opdivo also now approved for shorter 30-minute infusions, cutting previous infusion time in half 1
Bristol-Myers
Squibb Company (NYSE:BMY) today announced the U.S. Food and Drug
Administration (FDA) has approved a supplemental Biologics License
Application (sBLA) updating the Opdivo
® (nivolumab)
dosing schedule to include 480 mg infused every four weeks (Q4W) for a
majority of approved indications.1 This approval will provide
health care professionals the flexibility to customize patient care with
the option of using the newly approved Q4W (480 mg) flat dose in
addition to the previously available option of every two weeks (Q2W) at
240 mg, now available in a new 240 mg vial.1 Opdivo
also was approved for a shorter 30-minute infusion across all approved
indications.1 Dosing schedule updates for an additional
approved indication for Opdivo may be submitted to the FDA
in the future.
“At Bristol-Myers Squibb, we are united in our mission to fight cancer
from all angles and recognize every patient has unique needs. From the
introduction of our first Immuno-Oncology agent through today’s approval
of flexible dosing options at two- or four-week intervals, we are
relentless in pursuing innovative options for the cancer community,”
said Johanna Mercier, head, U.S. Commercial, Bristol-Myers Squibb. “With
this approval, we now offer the most robust range of dosing options for
an Immuno-Oncology medicine, providing enhanced flexibility to help
address each patient’s specific needs.”
Bristol-Myers Squibb’s strong heritage in Immuno-Oncology underpins this
approval, which builds on the company’s experience in developing agents
that use the body’s own immune system to help fight cancers. The Q4W
(480 mg) flat dose option is approved for the following indications for Opdivo:
-
Metastatic melanoma (monotherapy or monotherapy phase after
combination treatment with Yervoy
® [ipilimumab])1,2
-
Previously treated metastatic non-small cell lung cancer1
-
Advanced renal cell carcinoma following prior anti-angiogenic therapy1
-
Previously treated locally advanced or metastatic urothelial carcinoma
following disease progression during or after platinum-based
chemotherapy1
-
Classical Hodgkin lymphoma following relapse/progression after
autologous hematopoietic stem cell transplantation (HSCT) and
brentuximab vedotin, or three or more lines of systemic therapy that
includes autologous HSCT1
-
Recurrent/metastatic squamous cell carcinoma of the head and neck
following platinum-based therapy1
-
Hepatocellular carcinoma after prior sorafenib therapy1
-
Adjuvant therapy for patients with completely resected melanoma with
lymph node involvement or metastatic disease1
Opdivo is associated with the following Warnings and Precautions
including immune-mediated: pneumonitis, colitis, hepatitis,
endocrinopathies, nephritis and renal dysfunction, skin adverse
reactions, encephalitis, other adverse reactions; infusion reactions;
complications of allogeneic HSCT after Opdivo; and embryo-fetal
toxicity.1
With the expanded label, the following dosing schedule options are
immediately available:
|
|
|
|
|
Schedule
|
|
|
|
Dosage
|
Q2W1
|
|
|
|
240 mg (now available in one vial)1
|
Q4W1
|
|
|
|
480 mg1
|
|
|
|
|
|
“We continuously learn new ways to individualize treatment with
Immuno-Oncology therapies, and in my experience, what works for one
patient may not be optimal for another,”3 said Jeffrey S.
Weber, M.D., Ph.D., deputy director of the Perlmutter Cancer Center at
NYU Langone Health and professor of medicine at NYU School of Medicine.
“For instance, some patients may need the support of two-week visits
with their health care team, while for others, a four-week interval may
be more appropriate and better suited to their treatment needs.4
With this approval, we now have additional ways to help tailor patient
care.”
INDICATIONS
OPDIVO® (nivolumab) as a single agent is indicated for the
treatment of patients with BRAF V600 mutation-positive unresectable or
metastatic melanoma. This indication is approved under accelerated
approval based on progression-free survival. Continued approval for this
indication may be contingent upon verification and description of
clinical benefit in the confirmatory trials.
OPDIVO® (nivolumab) as a single agent is indicated for the
treatment of patients with BRAF V600 wild-type unresectable or
metastatic melanoma.
OPDIVO® (nivolumab), in combination with YERVOY®
(ipilimumab), is indicated for the treatment of patients with
unresectable or metastatic melanoma. This indication is approved under
accelerated approval based on progression-free survival. Continued
approval for this indication may be contingent upon verification and
description of clinical benefit in the confirmatory trials.
OPDIVO® (nivolumab) is indicated for the treatment of
patients with metastatic non-small cell lung cancer (NSCLC) with
progression on or after platinum-based chemotherapy. Patients with EGFR
or ALK genomic tumor aberrations should have disease progression on
FDA-approved therapy for these aberrations prior to receiving OPDIVO.
OPDIVO® (nivolumab) is indicated for the treatment of
patients with advanced renal cell carcinoma (RCC) who have received
prior anti-angiogenic therapy.
OPDIVO® (nivolumab) is indicated for the treatment of adult
patients with classical Hodgkin lymphoma (cHL) that has relapsed or
progressed after autologous hematopoietic stem cell transplantation
(HSCT) and brentuximab vedotin or after 3 or more lines of systemic
therapy that includes autologous HSCT. This indication is approved under
accelerated approval based on overall response rate. Continued approval
for this indication may be contingent upon verification and description
of clinical benefit in confirmatory trials.
OPDIVO® (nivolumab) is indicated for the treatment of
patients with recurrent or metastatic squamous cell carcinoma of the
head and neck (SCCHN) with disease progression on or after
platinum-based therapy.
OPDIVO® (nivolumab) is indicated for the treatment of
patients with locally advanced or metastatic urothelial carcinoma who
have disease progression during or following platinum-containing
chemotherapy or have disease progression within 12 months of neoadjuvant
or adjuvant treatment with platinum-containing chemotherapy. This
indication is approved under accelerated approval based on tumor
response rate and duration of response. Continued approval for this
indication may be contingent upon verification and description of
clinical benefit in confirmatory trials.
OPDIVO® (nivolumab) is indicated for the treatment of adult
and pediatric (12 years and older) patients with microsatellite
instability high (MSI-H) or mismatch repair deficient (dMMR) metastatic
colorectal cancer (CRC) that has progressed following treatment with a
fluoropyrimidine, oxaliplatin, and irinotecan. This indication is
approved under accelerated approval based on overall response rate and
duration of response. Continued approval for this indication may be
contingent upon verification and description of clinical benefit in
confirmatory trials.
OPDIVO® (nivolumab) is indicated for the treatment of
patients with hepatocellular carcinoma (HCC) who have been previously
treated with sorafenib. This indication is approved under accelerated
approval based on tumor response rate and durability of response.
Continued approval for this indication may be contingent upon
verification and description of clinical benefit in the confirmatory
trials.
OPDIVO® (nivolumab) is indicated for the adjuvant treatment
of patients with melanoma with involvement of lymph nodes or metastatic
disease who have undergone complete resection.
OPDIVO® (10 mg/mL) is an injection for intravenous (IV) use.
IMPORTANT SAFETY INFORMATION
WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS
YERVOY can result in severe and fatal immune-mediated adverse
reactions. These immune-mediated reactions may involve any organ system;
however, the most common severe immune-mediated adverse reactions are
enterocolitis, hepatitis, dermatitis (including toxic epidermal
necrolysis), neuropathy, and endocrinopathy. The majority of these
immune-mediated reactions initially manifested during treatment;
however, a minority occurred weeks to months after discontinuation of
YERVOY.
Assess patients for signs and symptoms of enterocolitis, dermatitis,
neuropathy, and endocrinopathy and evaluate clinical chemistries
including liver function tests (LFTs), adrenocorticotropic hormone
(ACTH) level, and thyroid function tests at baseline and before each
dose.
Permanently discontinue YERVOY and initiate systemic high-dose
corticosteroid therapy for severe immune-mediated reactions.
Immune-Mediated Pneumonitis
OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been
reported. Monitor patients for signs with radiographic imaging and for
symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more
severe pneumonitis. Permanently discontinue for Grade 3 or 4 and
withhold until resolution for Grade 2. In patients receiving OPDIVO
monotherapy, fatal cases of immune-mediated pneumonitis have occurred.
Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In
patients receiving OPDIVO with YERVOY, immune-mediated pneumonitis
occurred in 6% (25/407) of patients.
In Checkmate 205 and 039, pneumonitis, including interstitial lung
disease, occurred in 6.0% (16/266) of patients receiving OPDIVO.
Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients
receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).
Immune-Mediated Colitis
OPDIVO can cause immune-mediated colitis. Monitor patients for signs and
symptoms of colitis. Administer corticosteroids for Grade 2 (of more
than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for
Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent
colitis upon re-initiation of OPDIVO. When administered with YERVOY,
withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for
Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO
monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of
patients. In patients receiving OPDIVO with YERVOY, immune-mediated
colitis occurred in 26% (107/407) of patients including three fatal
cases.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening,
or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal
signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%)
patients. Across all YERVOY-treated patients in that study (n=511), 5
(1%) developed intestinal perforation, 4 (0.8%) died as a result of
complications, and 26 (5%) were hospitalized for severe enterocolitis.
Immune-Mediated Hepatitis
OPDIVO can cause immune-mediated hepatitis. Monitor patients for
abnormal liver tests prior to and periodically during treatment.
Administer corticosteroids for Grade 2 or greater transaminase
elevations. For patients without HCC, withhold OPDIVO for Grade 2 and
permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC,
withhold OPDIVO and administer corticosteroids if AST/ALT is within
normal limits at baseline and increases to >3 and up to 5 times the
upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at
baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT
is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10
times the ULN. Permanently discontinue OPDIVO and administer
corticosteroids if AST or ALT increases to >10 times the ULN or total
bilirubin increases >3 times the ULN. In patients receiving OPDIVO
monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of
patients. In patients receiving OPDIVO with YERVOY, immune-mediated
hepatitis occurred in 13% (51/407) of patients.
In Checkmate 040, immune-mediated hepatitis requiring systemic
corticosteroids occurred in 5% (8/154) of patients receiving OPDIVO.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening,
or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total
bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients,
with fatal hepatic failure in 0.2% and hospitalization in 0.4%.
Immune-Mediated Neuropathies
In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal
Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor
neuropathy were reported.
Immune-Mediated Endocrinopathies
OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal
insufficiency, autoimmune thyroid disorders, and Type 1 diabetes
mellitus. Monitor patients for signs and symptoms of hypophysitis, signs
and symptoms of adrenal insufficiency, thyroid function prior to and
periodically during treatment, and hyperglycemia. Administer hormone
replacement as clinically indicated and corticosteroids for Grade 2 or
greater hypophysitis. Withhold for Grade 2 or 3 and permanently
discontinue for Grade 4 hypophysitis. Administer corticosteroids for
Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently
discontinue for Grade 3 or 4 adrenal insufficiency. Administer
hormone-replacement therapy for hypothyroidism. Initiate medical
management for control of hyperthyroidism. Withhold OPDIVO for Grade 3
and permanently discontinue for Grade 4 hyperglycemia.
In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6%
(12/1994) of patients. In patients receiving OPDIVO with YERVOY,
hypophysitis occurred in 9% (36/407) of patients. In patients receiving
OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of
patients. In patients receiving OPDIVO with YERVOY, adrenal
insufficiency occurred in 5% (21/407) of patients. In patients receiving
OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in
hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism
occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In
patients receiving OPDIVO with YERVOY, hypothyroidism or thyroiditis
resulting in hypothyroidism occurred in 22% (89/407) of patients.
Hyperthyroidism occurred in 8% (34/407) of patients receiving OPDIVO
with YERVOY. In patients receiving OPDIVO monotherapy, diabetes occurred
in 0.9% (17/1994) of patients. In patients receiving OPDIVO with YERVOY,
diabetes occurred in 1.5% (6/407) of patients.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe to
life-threatening immune-mediated endocrinopathies (requiring
hospitalization, urgent medical intervention, or interfering with
activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients.
All 9 patients had hypopituitarism, and some had additional concomitant
endocrinopathies such as adrenal insufficiency, hypogonadism, and
hypothyroidism. 6 of the 9 patients were hospitalized for severe
endocrinopathies.
Immune-Mediated Nephritis and Renal Dysfunction
OPDIVO can cause immune-mediated nephritis. Monitor patients for
elevated serum creatinine prior to and periodically during treatment.
Administer corticosteroids for Grades 2-4 increased serum creatinine.
Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4
increased serum creatinine. In patients receiving OPDIVO monotherapy,
immune-mediated nephritis and renal dysfunction occurred in 1.2%
(23/1994) of patients. In patients receiving OPDIVO with YERVOY,
immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407)
of patients.
Immune-Mediated Skin Adverse Reactions and Dermatitis
OPDIVO can cause immune-mediated rash, including Stevens-Johnson
syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with
fatal outcome. Administer corticosteroids for Grade 3 or 4 rash.
Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For
symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient
for specialized care for assessment and treatment; if confirmed,
permanently discontinue. In patients receiving OPDIVO monotherapy,
immune-mediated rash occurred in 9% (171/1994) of patients. In patients
receiving OPDIVO with YERVOY, immune-mediated rash occurred in 22.6%
(92/407) of patients.
In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening,
or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic
epidermal necrolysis, or rash complicated by full thickness dermal
ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade
3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result
of toxic epidermal necrolysis. 1 additional patient required
hospitalization for severe dermatitis.
Immune-Mediated Encephalitis
OPDIVO can cause immune-mediated encephalitis. Evaluation of patients
with neurologic symptoms may include, but not be limited to,
consultation with a neurologist, brain MRI, and lumbar puncture.
Withhold OPDIVO in patients with new-onset moderate to severe neurologic
signs or symptoms and evaluate to rule out other causes. If other
etiologies are ruled out, administer corticosteroids and permanently
discontinue OPDIVO for immune-mediated encephalitis. In patients
receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of
patients. Fatal limbic encephalitis occurred in one patient after 7.2
months of exposure despite discontinuation of OPDIVO and administration
of corticosteroids. Encephalitis occurred in one patient receiving
OPDIVO with YERVOY (0.2%) after 1.7 months of exposure.
Other Immune-Mediated Adverse Reactions
Based on the severity of the adverse reaction, permanently discontinue
or withhold OPDIVO, administer high-dose corticosteroids, and, if
appropriate, initiate hormone-replacement therapy. Across clinical
trials of OPDIVO monotherapy or in combination with YERVOY, the
following clinically significant immune-mediated adverse reactions, some
with fatal outcome, occurred in <1.0% of patients receiving OPDIVO:
myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis,
facial and abducens nerve paresis, demyelination, polymyalgia
rheumatica, autoimmune neuropathy, Guillain-Barré syndrome,
hypopituitarism, systemic inflammatory response syndrome, gastritis,
duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi
lymphadenitis), motor dysfunction, vasculitis, and myasthenic syndrome.
If uveitis occurs in combination with other immune-mediated adverse
reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been
observed in patients receiving OPDIVO and may require treatment with
systemic steroids to reduce the risk of permanent vision loss.
Infusion Reactions
OPDIVO can cause severe infusion reactions, which have been reported in
<1.0% of patients in clinical trials. Discontinue OPDIVO in patients
with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of
infusion in patients with Grade 1 or 2. In patients receiving OPDIVO
monotherapy as a 60-minute infusion, infusion-related reactions occurred
in 6.4% (127/1994) of patients. In a separate study in which patients
received OPDIVO monotherapy as a 60-minute infusion or a 30-minute
infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7%
(10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4%
(5/369) of patients, respectively, experienced adverse reactions within
48 hours of infusion that led to dose delay, permanent discontinuation
or withholding of OPDIVO. In patients receiving OPDIVO as a 60-minute
infusion prior to the infusion of YERVOY, infusion-related reactions
occurred in 2.5% (10/407) of patients.
Complications of Allogeneic HSCT after OPDIVO
Complications, including fatal events, occurred in patients who received
allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients
from Checkmate 205 and 039, who underwent allogeneic HSCT after
discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with
myeloablative conditioning). Thirty-five percent (6/17) of patients died
from complications of allogeneic HSCT after OPDIVO. Five deaths occurred
in the setting of severe or refractory GVHD. Grade 3 or higher acute
GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was
reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome,
without an identified infectious cause, was reported in 35% (n=6) of
patients. Two cases of encephalitis were reported: Grade 3 (n=1)
lymphocytic encephalitis without an identified infectious cause, and
Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive
disease (VOD) occurred in one patient, who received reduced-intensity
conditioned allogeneic HSCT and died of GVHD and multi-organ failure.
Other cases of hepatic VOD after reduced-intensity conditioned
allogeneic HSCT have also been reported in patients with lymphoma who
received a PD-1 receptor blocking antibody before transplantation. Cases
of fatal hyperacute GVHD have also been reported. These complications
may occur despite intervening therapy between PD-1 blockade and
allogeneic HSCT.
Follow patients closely for early evidence of transplant-related
complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD,
steroid-requiring febrile syndrome, hepatic VOD, and other
immune-mediated adverse reactions, and intervene promptly.
Embryo-Fetal Toxicity
Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal
harm when administered to a pregnant woman. Advise pregnant women of the
potential risk to a fetus. Advise females of reproductive potential to
use effective contraception during treatment with an OPDIVO- or YERVOY-
containing regimen and for at least 5 months after the last dose of
OPDIVO.
Lactation
It is not known whether OPDIVO or YERVOY is present in human milk.
Because many drugs, including antibodies, are excreted in human milk and
because of the potential for serious adverse reactions in nursing
infants from an OPDIVO-containing regimen, advise women to discontinue
breastfeeding during treatment. Advise women to discontinue nursing
during treatment with YERVOY and for 3 months following the final dose.
Serious Adverse Reactions
In Checkmate 037, serious adverse reactions occurred in 41% of patients
receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in
42% of patients receiving OPDIVO. The most frequent Grade 3 and 4
adverse drug reactions reported in 2% to <5% of patients receiving
OPDIVO were abdominal pain, hyponatremia, increased aspartate
aminotransferase, and increased lipase. In Checkmate 066, serious
adverse reactions occurred in 36% of patients receiving OPDIVO (n=206).
Grade 3 and 4 adverse reactions occurred in 41% of patients receiving
OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in
≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase
(3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions
(73% and 37%), adverse reactions leading to permanent discontinuation
(43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4
adverse reactions (72% and 44%) all occurred more frequently in the
OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The
most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY
arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%),
colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and
057, serious adverse reactions occurred in 46% of patients receiving
OPDIVO (n=418). The most frequent serious adverse reactions reported in
at least 2% of patients receiving OPDIVO were pneumonia, pulmonary
embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and
respiratory failure. In Checkmate 025, serious adverse reactions
occurred in 47% of patients receiving OPDIVO (n=406). The most frequent
serious adverse reactions reported in ≥2% of patients were acute kidney
injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In
Checkmate 205 and 039, adverse reactions leading to discontinuation
occurred in 7% and dose delays due to adverse reactions occurred in 34%
of patients (n=266). Serious adverse reactions occurred in 26% of
patients. The most frequent serious adverse reactions reported in ≥1% of
patients were pneumonia, infusion-related reaction, pyrexia, colitis or
diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died
from causes other than disease progression: 3 from adverse reactions
within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months
after completing OPDIVO, and 6 from complications of allogeneic HSCT. In
Checkmate 141, serious adverse reactions occurred in 49% of patients
receiving OPDIVO (n=236). The most frequent serious adverse reactions
reported in at least 2% of patients receiving OPDIVO were pneumonia,
dyspnea, respiratory failure, respiratory tract infection, and sepsis.
In Checkmate 275, serious adverse reactions occurred in 54% of patients
receiving OPDIVO (n=270). The most frequent serious adverse reactions
reported in at least 2% of patients receiving OPDIVO were urinary tract
infection, sepsis, diarrhea, small intestine obstruction, and general
physical health deterioration. In Checkmate 040, serious adverse
reactions occurred in 49% of patients (n=154). The most frequent serious
adverse reactions reported in at least 2% of patients were pyrexia,
ascites, back pain, general physical health deterioration, abdominal
pain, and pneumonia. In Checkmate 238, Grade 3 or 4 adverse reactions
occurred in 25% of OPDIVO-treated patients (n=452). The most frequent
Grade 3 and 4 adverse reactions reported in at least 2% of
OPDIVO-treated patients were diarrhea and increased lipase and amylase.
Serious adverse reactions occurred in 18% of OPDIVO-treated patients.
Common Adverse Reactions
In Checkmate 037, the most common adverse reaction (≥20%) reported with
OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse
reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205)
were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28%
vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common
(≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were
fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%),
vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse
reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%),
diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most
common adverse reactions (≥20%) in patients receiving OPDIVO (n=418)
were fatigue, musculoskeletal pain, cough, dyspnea, and decreased
appetite. In Checkmate 025, the most common adverse reactions (≥20%)
reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were
asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs
29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%),
constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain
(21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the
most common adverse reactions (≥20%) reported in patients receiving
OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue
(39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain
(26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141,
the most common adverse reactions (≥10%) in patients receiving OPDIVO
(n=236) were cough and dyspnea at a higher incidence than investigator’s
choice. In Checkmate 275, the most common adverse reactions (≥ 20%)
reported in patients receiving OPDIVO (n=270) were fatigue (46%),
musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%).
In Checkmate 040, the most common adverse reactions (≥20%) in patients
receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%),
abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough
(23%), and decreased appetite (22%). In Checkmate 238, the most common
adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs
ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea
(37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%),
pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper
respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The
most common immune-mediated adverse reactions were rash (16%),
diarrhea/colitis (6%), and hepatitis (3%). The most common adverse
reactions (≥20%) in patients who received OPDIVO as a single agent were
fatigue, rash, musculoskeletal pain, pruritus, diarrhea, nausea,
asthenia, cough, dyspnea, constipation, decreased appetite, back pain,
arthralgia, upper respiratory tract infection, pyrexia, headache, and
abdominal pain.
In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse
reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue
(41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).
Checkmate Trials and Patient Populations
Checkmate 067–advanced melanoma alone or in combination with
YERVOY® (ipilimumab); Checkmate 037 and
066–advanced melanoma; Checkmate 017–squamous
non-small cell lung cancer (NSCLC); Checkmate 057–non-squamous
NSCLC; Checkmate 025–renal cell carcinoma; Checkmate
205/039–classical Hodgkin lymphoma; Checkmate 141–squamous
cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate
040–hepatocellular carcinoma, Checkmate 238 – adjuvant
treatment of melanoma.
Please see U.S. Full Prescribing Information for OPDIVO
and YERVOY,
including Boxed WARNING regarding immune-mediated adverse reactions
for YERVOY.
About the Opdivo Clinical
Development Program
Bristol-Myers Squibb’s global development program is founded on
scientific expertise in the field of Immuno-Oncology and includes a
broad range of clinical trials studying Opdivo, across all
phases, including Phase 3, in a variety of tumor types. To date, the Opdivo
clinical development program has enrolled more than 25,000 patients.
Bristol-Myers Squibb & Immuno-Oncology:
Advancing Oncology Research
At Bristol-Myers Squibb, patients are at the center of everything we do.
Our vision for the future of cancer care is focused on researching and
developing transformational Immuno-Oncology (I-O) medicines for
hard-to-treat cancers that could potentially improve outcomes for these
patients.
We are leading the scientific understanding of I-O through our extensive
portfolio of investigational compounds and approved agents. Our
differentiated clinical development program is studying broad patient
populations across more than 50 types of cancers with 14 clinical-stage
molecules designed to target different immune system pathways. Our deep
expertise and innovative clinical trial designs position us to advance
I-O/I-O, I-O/chemotherapy, I-O/targeted therapies and I-O/radiation
therapies across multiple tumors and potentially deliver the next wave
of therapies with a sense of urgency. We also continue to pioneer
research that will help facilitate a deeper understanding of the role of
immune biomarkers and how patients’ tumor biology can be used as a guide
for treatment decisions throughout their journey.
We understand making the promise of I-O a reality for the many patients
who may benefit from these therapies requires not only innovation on our
part but also close collaboration with leading experts in the field. Our
partnerships with academia, government, advocacy and biotech companies
support our collective goal of providing new treatment options to
advance the standards of clinical practice.
About Bristol-Myers Squibb’s Patient Access
Support
Bristol-Myers Squibb remains committed to providing assistance so that
cancer patients who need our medicines can access them and expedite time
to therapy.
BMS Access Support®, the Bristol-Myers Squibb patient access
and reimbursement program, is designed to help appropriate patients
initiate and maintain access to BMS medicines during their treatment
journey. BMS Access Support offers benefit investigation, prior
authorization assistance and co-pay assistance for eligible,
commercially insured patients. More information about our access and
reimbursement support can be obtained by calling BMS Access Support at
1-800-861-0048 or by visiting www.bmsaccesssupport.com.
About the Bristol-Myers Squibb and Ono
Pharmaceutical Collaboration
In 2011, through a collaboration agreement with Ono Pharmaceutical Co.,
Bristol-Myers Squibb expanded its territorial rights to develop and
commercialize Opdivo globally except in Japan, South
Korea and Taiwan, where Ono had retained all rights to the compound at
the time. On July 23, 2014, Ono and Bristol-Myers Squibb further
expanded the companies’ strategic collaboration agreement to jointly
develop and commercialize multiple immunotherapies – as single agents
and combination regimens – for patients with cancer in Japan, South
Korea and Taiwan.
About Bristol-Myers Squibb
Bristol-Myers Squibb is a global biopharmaceutical company whose mission
is to discover, develop and deliver innovative medicines that help
patients prevail over serious diseases. For more information about
Bristol-Myers Squibb, visit us at BMS.com
or follow us on LinkedIn,
Twitter,
YouTube
and Facebook.
Bristol-Myers Squibb Forward-Looking Statement
This press release contains “forward-looking statements” as that term
is defined in the Private Securities Litigation Reform Act of 1995
regarding the research, development and commercialization of
pharmaceutical products. Such forward-looking statements are based on
current expectations and involve inherent risks and uncertainties,
including factors that could delay, divert or change any of them, and
could cause actual outcomes and results to differ materially from
current expectations. No forward-looking statement can be guaranteed.
Forward-looking statements in this press release should be evaluated
together with the many uncertainties that affect Bristol-Myers Squibb’s
business, particularly those identified in the cautionary factors
discussion in Bristol-Myers Squibb’s Annual Report on Form 10-K for the
year ended December 31, 2017 in our Quarterly Reports on Form 10-Q and
our Current Reports on Form 8-K. Bristol-Myers Squibb undertakes no
obligation to publicly update any forward-looking statement, whether as
a result of new information, future events or otherwise.
References
1. Opdivo Prescribing Information. Opdivo U.S. Product
Information. Last updated: March 2018. Princeton, NJ: Bristol-Myers
Squibb Company.
2. Yervoy Prescribing Information. Yervoy U.S. Product
Information. Last updated: July 2017. Princeton, NJ: Bristol-Myers
Squibb Company.
3. American Cancer Society. Managing Cancer as a Chronic Illness. https://www.cancer.org/treatment/survivorship-during-and-after-treatment/when-cancer-doesnt-go-away.html.
Accessed March 2, 2018.
4. Zhao X, Ivaturi V, Gopalakrishnan M, et al. A model-based
exposure-response (ER) assessment of a nivolumab (NIVO) 4-weekly (Q4W)
dosing schedule across multiple tumor types. Cancer Res. 2017
Jul; 77 Suppl:13.
Bristol-Myers Squibb Company Media: Laurel Sacks, 609-302-5456 laurel.sacks@bms.com or Investors: Tim Power, 609-252-7509 timothy.power@bms.com orBill Szablewski, 609-252-5894 william.szablewski@bms.com